/img alt="Imagem da capa" class="recordcover" src="""/>
Dissertação
Transição de fase dinâmica em modelos de spins
Neste trabalho investigaremos o diagrama de fase estatico e dinamico dos modelos de spins: Ising com campo aleatorio com uma distribuicao de probabilidade bimodal, Blume-Capel e Blume-Capel com campo externo oscilante, utilizando as aproximacoes de campo medio (MFA) e de campo efetivo (EFT). As prop...
Autor principal: | Bezerra, Emanuel Costabile |
---|---|
Outros Autores: | http://lattes.cnpq.br/5901767470687937 |
Grau: | Dissertação |
Idioma: | por |
Publicado em: |
Universidade Federal do Amazonas
2015
|
Assuntos: | |
Acesso em linha: |
http://tede.ufam.edu.br/handle/tede/3239 |
Resumo: |
---|
Neste trabalho investigaremos o diagrama de fase estatico e dinamico dos modelos de spins: Ising com campo aleatorio com uma distribuicao de probabilidade bimodal, Blume-Capel e Blume-Capel com campo externo oscilante, utilizando as aproximacoes de campo medio (MFA) e de campo efetivo (EFT). As propriedades termicas de equilıbrio sao obtidas teoricamente via o formalismo matematico da mecanica estatıstica de ltzmann
e Gibbs. Os estados estacionarios dos modelos cineticos sao descritos pela dinamica
estocastica de Glauber. Usando MFA mostramos que as linhas de primeira ordem obtidas no equilıbrio, atraves da construcao de Maxwell para a energia livre, e fora do equilıbrio sao diferentes . A fim de analizar a estabilidade do sitema, o expoente de Lyapunov e calculado numericamente. Nesta aproximacao foram encontrados valores distintos
de Hc(Dc) para o modelo de Ising com campo aleatorio (Blume-Capel), isto e, Hc(estatico)[Dc(estatico)]6= Hc(dinamico)[Dc(dinamico)]. Por outro lado, usando EFT as
linhas de primeira ordem, tambem diferem, mas agora temos Hc(est´atico)[Dc(est´atico)]= Hc(dinamico)[Dc(dinamico)]. Comparamos nossos resultados da dinamica com o valor
de Hc obtido via simulacao de Monte Carlo fora do equilıbrio e mostramos que ha um acordo satisfatorio do ponto de vista quantitativo. A energia do sistema representado
pelo modelo Blume-Capel com campo externo oscilante nao permanece fixa ao longo da evolu¸cao, oscilando para todo instante de tempo, portanto, nao e possıvel obter as
propriedades estaticas pelo formalismo da mecanica estatıstica do equilıbrio. Obtivemos diagramas de fase onde encontramos regoes ordenadas (ferromagneticas), desordenadas
(paramagnetica) e regoes de coexistencia |