/img alt="Imagem da capa" class="recordcover" src="""/>
Dissertação
Modelagem bayesiana flexível em regressão com erros nas variáveis
Em modelos de regressão, o pressuposto clássico de normalidade para a distribuição dos erros aleatórios é muitas vezes violado, mascarando algumas características importantes da variabilidade dos dados. Algumas ações práticas para resolver esse problema, como transformações nos dados, revelam-se...
Autor principal: | Souza Filho, Nelson Lima de |
---|---|
Outros Autores: | http://lattes.cnpq.br/0194777777679231 |
Grau: | Dissertação |
Idioma: | por |
Publicado em: |
Universidade Federal do Amazonas
2015
|
Assuntos: | |
Acesso em linha: |
http://tede.ufam.edu.br/handle/tede/3669 |
Resumo: |
---|
Em modelos de regressão, o pressuposto clássico de normalidade para a distribuição
dos erros aleatórios é muitas vezes violado, mascarando algumas características importantes
da variabilidade dos dados. Algumas ações práticas para resolver esse problema,
como transformações nos dados, revelam-se muitas vezes ineficazes.
Neste trabalho apresentamos uma proposta para lidar com esta questão no contexto do
modelo de regressão multivariada linear simples, quando a variável resposta e a variável
regressora são observadas com erro aditivo o chamado modelo de regressão linear com
erros nas variáveis. Em tais modelos, o pesquisador observa uma variável substituta em
vez da covariável de interesse. Nós estendemos o modelo clássico normal, modelando
a distribuição conjunta da covariável e dos erros aleatórios por uma mistura finita de
densidades pertencentes a uma família de distribuições bem geral, acomodando ao mesmo
tempo assimetria, caudas pesadas e multimodalidade, permitindo um grau de flexibilidade
que não pode ser atingido pelo modelo normal.
Para a parte de estimação desenvolvemos um algoritmo do tipo Gibbs para proceder
estimação Bayesiana. Alguns modelos propostos foram comparados com modelos simétricos
já existentes na literatura, utilizando um critério DIC modificado, através da análise
de dados simulados e reais. |