Dissertação

Modelagem bayesiana flexível em regressão com erros nas variáveis

Em modelos de regressão, o pressuposto clássico de normalidade para a distribuição dos erros aleatórios é muitas vezes violado, mascarando algumas características importantes da variabilidade dos dados. Algumas ações práticas para resolver esse problema, como transformações nos dados, revelam-se...

ver descrição completa

Autor principal: Souza Filho, Nelson Lima de
Outros Autores: http://lattes.cnpq.br/0194777777679231
Grau: Dissertação
Idioma: por
Publicado em: Universidade Federal do Amazonas 2015
Assuntos:
Acesso em linha: http://tede.ufam.edu.br/handle/tede/3669
Resumo:
Em modelos de regressão, o pressuposto clássico de normalidade para a distribuição dos erros aleatórios é muitas vezes violado, mascarando algumas características importantes da variabilidade dos dados. Algumas ações práticas para resolver esse problema, como transformações nos dados, revelam-se muitas vezes ineficazes. Neste trabalho apresentamos uma proposta para lidar com esta questão no contexto do modelo de regressão multivariada linear simples, quando a variável resposta e a variável regressora são observadas com erro aditivo o chamado modelo de regressão linear com erros nas variáveis. Em tais modelos, o pesquisador observa uma variável substituta em vez da covariável de interesse. Nós estendemos o modelo clássico normal, modelando a distribuição conjunta da covariável e dos erros aleatórios por uma mistura finita de densidades pertencentes a uma família de distribuições bem geral, acomodando ao mesmo tempo assimetria, caudas pesadas e multimodalidade, permitindo um grau de flexibilidade que não pode ser atingido pelo modelo normal. Para a parte de estimação desenvolvemos um algoritmo do tipo Gibbs para proceder estimação Bayesiana. Alguns modelos propostos foram comparados com modelos simétricos já existentes na literatura, utilizando um critério DIC modificado, através da análise de dados simulados e reais.