/img alt="Imagem da capa" class="recordcover" src="""/>
Dissertação
Misturas de modelos de regressão linear com erros nas variáveis usando misturas de escala da normal assimétrica
A estimação tradicional em mistura de modelos de regressão é baseada na suposição de normalidade para os erros aleatórios, sendo assim, sensível a outliers, caudas pesadas e erros assimétricos. Outra desvantagem é que, em geral, a análise é restrita a preditores que são observados diretamente. A...
Autor principal: | Monteiro, Renata Evangelista |
---|---|
Outros Autores: | http://lattes.cnpq.br/5225616211203080 |
Grau: | Dissertação |
Idioma: | por |
Publicado em: |
Universidade Federal do Amazonas
2018
|
Assuntos: | |
Acesso em linha: |
https://tede.ufam.edu.br/handle/tede/6417 |
Resumo: |
---|
A estimação tradicional em mistura de modelos de regressão é baseada na suposição
de normalidade para os erros aleatórios, sendo assim, sensível a outliers, caudas
pesadas e erros assimétricos. Outra desvantagem é que, em geral, a análise é restrita a
preditores que são observados diretamente.
Apresentamos uma proposta para lidar com estas questões simultaneamente no
contexto de mistura de regressões estendendo o modelo normal clássico. Assumimos
que, conjuntamente e em cada componente da mistura, os erros aleatórios e as covariáveis
seguem uma mistura de escala da distribuição normal assimétrica. Além disso, é feita a
suposição de que as covariáveis são observadas com erro aditivo.
Um algorítmo do tipo MCMC foi desenvolvido para realizar inferência Bayesiana.
A eficácia do modelo proposto é verificada via análises de dados simulados e reais. |