/img alt="Imagem da capa" class="recordcover" src="""/>
Dissertação
Detecção de comportamento anormal em vídeos de multidão
Sistemas de segurança produzem uma quantidade massiva de material de vídeo que pode ser utilizada para reconhecer comportamento anormal ou atividades que ofereçam riscos à saúde das pessoas. Entretanto, nem sempre os operadores humanos são capazes de ava-liar de forma coerente todo o material dispon...
Autor principal: | Gregoratto, Caio de Jesus |
---|---|
Outros Autores: | http://lattes.cnpq.br/7921625025564103 |
Grau: | Dissertação |
Idioma: | por |
Publicado em: |
Universidade Federal do Amazonas
2016
|
Assuntos: | |
Acesso em linha: |
http://tede.ufam.edu.br/handle/tede/5251 |
Resumo: |
---|
Sistemas de segurança produzem uma quantidade massiva de material de vídeo que pode ser utilizada para reconhecer comportamento anormal ou atividades que ofereçam riscos à saúde das pessoas. Entretanto, nem sempre os operadores humanos são capazes de ava-liar de forma coerente todo o material disponível. Portanto, reconhecer comportamento em vídeo de forma automatizada pode ser fundamental para que o uso de sistemas de vigilância seja eficiente em manter a segurança de uma área ou a integridade das pes-soas em locais públicos. Diante disso, esta dissertação apresenta um método voltada para detectar e reconhecer comportamento anormal em vídeos de multidão. Esse método com-bina técnicas baseadas em características com técnicas baseadas na aparência e as utiliza conforme o contexto das atividades presentes na cena. Técnicas baseadas na aparência utilizam modelos matemáticos gerados a partir dos níveis de intensidade da imagem para realizar suas tarefas, enquanto que as técnicas baseadas em características usam dados extraídos da imagem, como bordas, linhas e coordenadas, para derivar seus modelos. O método proposto exibe para o operador humano, por meio de marcações visuais, somente conteúdo com possíveis ocorrências de aglomeração ou dispersão da multidão, compor-tamentos considerados anormais avaliados nesta pesquisa. Os resultados obtidos nos ex-perimentos mostram que a abordagem proposta é capaz de reconhecer comportamentos anormais em vídeos de multidão e marcar as regiões na imagem onde ocorrem anomalias do tipo aglomeração ou dispersão das pessoas na cena. O método proposto, diferente das demais abordagens existentes na literatura, faz avaliações distintas entre as cenas suspei-tas de conter comportamento anormal e as cenas com comportamento normal ou somente com a imagem de fundo. Como consequência, os resultados dos experimentos mostram que o método proposto apresenta tempo de execução 64% menor do que os baselines em uma base de dados criada neste trabalho e 71% menor nas bases de dados UMN e PETS2009. Além disso, o método proposto atinge uma acurácia de 90% na base de dados YAB, enquanto o baseline atinge 85%. |