/img alt="Imagem da capa" class="recordcover" src="""/>
Tese
Handling Concept Drift Based on Data Similarity and Dynamic Classifier Selection
Em aplicações do mundo real, algoritmos de aprendizagem de máquina podem ser usados para detecção de spam, monitoramento ambiental, detecção de fraude, fluxo de cliques na Web, dentre outros. A maioria desses problemas apresenta ambientes que sofrem mudanças com o passar do tempo, devido à natureza...
Autor principal: | Pinagé, Felipe Azevedo |
---|---|
Outros Autores: | http://lattes.cnpq.br/7145673876709301 |
Grau: | Tese |
Idioma: | por |
Publicado em: |
Universidade Federal do Amazonas
2017
|
Assuntos: | |
Acesso em linha: |
http://tede.ufam.edu.br/handle/tede/5956 |
Resumo: |
---|
Em aplicações do mundo real, algoritmos de aprendizagem de máquina podem ser usados para detecção de spam, monitoramento ambiental, detecção de fraude, fluxo de cliques na Web, dentre outros. A maioria desses problemas apresenta ambientes que sofrem mudanças com o passar do tempo, devido à natureza dinâmica de geração dos dados e/ou porque envolvem dados que ocorrem em fluxo. O problema envolvendo tarefas de classificação em fluxo contínuo de dados tem se tornado um dos maiores desafios na área de aprendizagem de máquina nas últimas décadas, pois, como os dados não são conhecidos de antemão, eles devem ser aprendidos à medida que são processados. Além disso, devem ser feitas previsões rápidas a respeito desses dados para dar suporte à decisões muitas vezes tomadas em tempo real. Atualmente, métodos baseados em monitoramento da acurácia de classificação são geralmente usados para detectar explicitamente mudanças nos dados. Entretanto, esses métodos podem tornar-se inviáveis em aplicações práticas, especialmente devido a dois aspectos: a necessidade de uma realimentação do sistema por um operador humano, e a dependência de uma queda significativa da acurácia para que mudanças sejam detectadas. Além disso, a maioria desses métodos é baseada em aprendizagem incremental, onde modelos de predição são atualizados para cada instância de entrada, fato que pode levar a atualizações desnecessárias do sistema. A fim de tentar superar todos esses problemas, nesta tese são propostos dois métodos semi-supervisionados de detecção explícita de mudanças em dados, os quais baseiam-se na estimação e monitoramento de uma métrica de pseudo-erro. O modelo de decisão é atualizado somente após a detecção de uma mudança. No primeiro método proposto, o pseudo-erro é monitorado a partir de métricas de similaridade calculadas entre a distribuição atual e distribuições anteriores dos dados. O segundo método proposto utiliza seleção dinâmica de classificadores para aumentar a precisão do cálculo do pseudo-erro. Como consequência, nosso método possibilita que conjuntos de classificadores online sejam criados a partir de auto-treinamento. Os experimentos apresentaram resultados competitivos quando comparados inclusive com métodos baseados em aprendizagem incremental totalmente supervisionada. A proposta desses dois métodos, especialmente do segundo, é relevante por permitir que tarefas de detecção e reação a mudanças sejam aplicáveis em diversos problemas práticos alcançando altas taxas de acurácia, dado que, na maioria dos problemas práticos, não é possível obter o rótulo de uma instância imediatamente após sua classificação feita pelo sistema. |