Dissertação

Misturas de escala da distribuição normal assimétrica com dados faltantes

Neste trabalho estudamos uma ferramenta de estimação para modelos sob a classe de misturas de escala da distribuição normal assimétrica multivariada onde valores faltantes ocorrem nos dados. Desta forma, apresentamos uma proposta utilizando tais modelos flexíveis e algoritmos computacionais para...

ver descrição completa

Autor principal: Pinheiro, Camila Xavier Sá Peixoto
Outros Autores: http://lattes.cnpq.br/0093205921769184
Grau: Dissertação
Idioma: por
Publicado em: Universidade Federal do Amazonas 2017
Assuntos:
Acesso em linha: http://tede.ufam.edu.br/handle/tede/5987
Resumo:
Neste trabalho estudamos uma ferramenta de estimação para modelos sob a classe de misturas de escala da distribuição normal assimétrica multivariada onde valores faltantes ocorrem nos dados. Desta forma, apresentamos uma proposta utilizando tais modelos flexíveis e algoritmos computacionais para a análise de dados multivariados com comportamento que foge do padrão usual da distribuição normal e outras distribuições simétricas usuais, apresentando forte assimetria e caudas pesadas. Além disso, mostramos a eficiência da aplicação da modelagem sugerida e do método de estimação proposto, por meio de estudos de simulação computacional, analisando a qualidade dos estimadores via estudos de vício e erro quadrático médio e comparando diferentes modelos via critérios de seleção. A abordagem inferencial utilizada foi a Bayesiana, utilizando os métodos MCMC tradicionais para obter gerações de amostras da distribuição a posterior.