Dissertação

Detecção de mudança de conceito baseada em aprendizado ativo

As atuais técnicas de aprendizado de máquina aplicadas na tarefa de predição são baseadas na premissa de que o ambiente em que os dados são gerados apresenta um comportamento estacionário e supervisionado. Porém, os ambientes, na maioria dos problemas do mundo real, são considerados dinâmicos e semi...

ver descrição completa

Autor principal: Costa, Albert França Josuá
Outros Autores: http://lattes.cnpq.br/2975180103165963
Grau: Dissertação
Idioma: por
Publicado em: Universidade Federal do Amazonas 2018
Assuntos:
Acesso em linha: http://tede.ufam.edu.br/handle/tede/6189
Resumo:
As atuais técnicas de aprendizado de máquina aplicadas na tarefa de predição são baseadas na premissa de que o ambiente em que os dados são gerados apresenta um comportamento estacionário e supervisionado. Porém, os ambientes, na maioria dos problemas do mundo real, são considerados dinâmicos e semi-supervisionados, fatos que invalidam as premissas normalmente utilizadas. Nesses ambientes há a possibilidade da ocorrência do fenômeno conhecido na literatura por mudança de conceito (do inglês concept drift), que caracteriza-se pela alteração na relação entre as características das instâncias e a sua verdadeira classe com a passagem do tempo. Como efeito primário da ocorrência desse fenômeno tem-se a degradação significativa na taxa de desempenho do classificador, tornando-o obsoleto para a tarefa. Encontram-se na literatura métodos que lidam implicitamente ou explicitamente com a mudança de conceito, sendo que os métodos cegos (implícitos) arcam com os custos de retreinar o classificador de forma constante, enquanto que os métodos informados (explícitos) atuam normalmente baseados no monitoramento da degradação do desempenho do classificador, ou na realização de suposições sobre a distribuição das instâncias. Para contornar essas dificuldades, esta dissertação propõe o uso da variação da densidade das instâncias mais significativas, calculada com base em Aprendizado Ativo, como sinalizador explícito da ocorrência de mudança de conceito. A densidade é mensurada a partir do conceito de margens virtuais projetadas no espaço de entrada, sendo que as margens virtuais são obtidas com base na incerteza do classificador. Objetivando-se demonstrar a validade do método proposto, denominado de Método de Detecção de Mudança de Conceito Baseada em Aprendizado Ativo (DMAA), experimentos foram realizados em duas etapas. A primeira consistiu na aplicação do DMAA em seis bases de dados, sendo quatro sintéticas e duas reais. Os resultados obtidos demonstram que o método proposto identificou em média 95,45% das mudanças existentes nas bases sintéticas, e alcançou uma média geral de erro de 16,5%. Na segunda etapa de experimentos, foi feita uma comparação entre o DMAA e três baselines, incluindo dois métodos supervisionados e um método baseado em aprendizado ativo. Os resultados indicam que o DMAA alcançou resultados estatisticamente superiores em mais da metade das bases de dados investigadas, além de reduzir significativamente a quantidade de instâncias rotuladas necessárias para manter o sistema atualizado.