Tese

A Study on Machine Learning Techniques for the Schema Matching Networks Problem

Casamento de Esquemas é a tarefa de encontrar correpondências entre elementos de diferentes esquemas de bancos de dados. É um problema desafiador, uma vez que o mesmo conceito geralmente é representado de maneiras distintas nos esquemas.Tradicionalmente, a tarefa envolve um par de esquemas a serem m...

ver descrição completa

Autor principal: Rodrigues, Diego de Azevedo
Outros Autores: http://lattes.cnpq.br/1094681264347962
Grau: Tese
Idioma: eng
Publicado em: Universidade Federal do Amazonas 2018
Assuntos:
Acesso em linha: https://tede.ufam.edu.br/handle/tede/6801
Resumo:
Casamento de Esquemas é a tarefa de encontrar correpondências entre elementos de diferentes esquemas de bancos de dados. É um problema desafiador, uma vez que o mesmo conceito geralmente é representado de maneiras distintas nos esquemas.Tradicionalmente, a tarefa envolve um par de esquemas a serem mapeados. Entretanto, houve um crescimento na necessidade de mapear vários esquemas ao mesmo tempo, tarefa conhecida como Casamento de Esquemas em Rede, onde o objetivo é identificar elementos de vários esquemas que correspondem ao mesmo conceito. Este trabalho propõe uma famı́lia de métodos para o problema do casamento de esquemas em rede baseados em aprendizagem de máquina, que provou ser uma alternativa viável para o problema do casamento tradicional em diversos domı́nios. Para superar obstáculo de obter bastantes instâncias de treino, também é proposta uma técnica de bootstrapping para gerar treino automático. Além disso, o trabalho considera restrições de integridade que ajudam a nortear o processo de casamento em rede. Este trabalho também propõe uma estratégia para receber avaliações do usuário, com o propósito de melhorar o resultado final. Experimentos mostram que o método proposto supera outros métodos comparados alcançando valor F1 até 0.83 e sem utilizar muitas avaliações do usuário.