/img alt="Imagem da capa" class="recordcover" src="""/>
Tese
A Study on Machine Learning Techniques for the Schema Matching Networks Problem
Casamento de Esquemas é a tarefa de encontrar correpondências entre elementos de diferentes esquemas de bancos de dados. É um problema desafiador, uma vez que o mesmo conceito geralmente é representado de maneiras distintas nos esquemas.Tradicionalmente, a tarefa envolve um par de esquemas a serem m...
Autor principal: | Rodrigues, Diego de Azevedo |
---|---|
Outros Autores: | http://lattes.cnpq.br/1094681264347962 |
Grau: | Tese |
Idioma: | eng |
Publicado em: |
Universidade Federal do Amazonas
2018
|
Assuntos: | |
Acesso em linha: |
https://tede.ufam.edu.br/handle/tede/6801 |
Resumo: |
---|
Casamento de Esquemas é a tarefa de encontrar correpondências entre elementos de diferentes esquemas de bancos de dados. É um problema desafiador, uma vez que o mesmo conceito geralmente é representado de maneiras distintas nos esquemas.Tradicionalmente, a tarefa envolve um par de esquemas a serem mapeados. Entretanto, houve um crescimento na necessidade de mapear vários esquemas ao mesmo tempo, tarefa conhecida como Casamento de Esquemas em Rede, onde o objetivo é identificar elementos de vários esquemas que correspondem ao mesmo conceito. Este trabalho propõe uma famı́lia de métodos para o problema do casamento de esquemas em rede baseados em aprendizagem de máquina, que provou ser uma alternativa viável para o problema do casamento tradicional em diversos domı́nios. Para superar obstáculo de obter bastantes instâncias de treino, também é proposta uma técnica de bootstrapping para gerar treino automático. Além disso, o trabalho considera restrições de integridade que ajudam a nortear
o processo de casamento em rede. Este trabalho também propõe uma estratégia para receber avaliações do usuário, com o propósito de melhorar o resultado final. Experimentos mostram que o método proposto supera outros métodos comparados alcançando valor F1 até 0.83 e sem utilizar muitas avaliações do usuário. |