/img alt="Imagem da capa" class="recordcover" src="""/>
Dissertação
Network science approach for enrichment analysis in breast and ovarian cancer
A identificação imprecisa das características do câncer pode levar o paciente a tratamentos agressivos e desnecessários. Portanto, é crucial identificar as características intrínsecas do tumor de forma mais precisa para propor tratamentos individualizados. Neste trabalho, apresentamos uma breve ex...
Autor principal: | Okimoto, Leandro Youiti Silva |
---|---|
Outros Autores: | http://lattes.cnpq.br/3079897846370401 |
Grau: | Dissertação |
Idioma: | eng |
Publicado em: |
Universidade Federal do Amazonas
2019
|
Assuntos: | |
Acesso em linha: |
https://tede.ufam.edu.br/handle/tede/7231 |
Resumo: |
---|
A identificação imprecisa das características do câncer pode levar o paciente a tratamentos agressivos e desnecessários. Portanto, é crucial identificar as características intrínsecas do tumor de forma mais precisa para propor tratamentos individualizados. Neste trabalho, apresentamos uma breve explicação dos fundamentos e pesquisas em teoria de grafos computacionais que buscam resolver problemas de identificação, classificação e caracterização de certos tipos de câncer. Nós propusemos uma nova abordagem baseada em Análise de Redes para encontrar listas de genes que servirão de entrada para análise de enriquecimento em câncer de mama e ovário usando informação proteogenômica. Em nossos resultados, mostramos que nossa abordagem é capaz de capturar processos biológicos e conjuntos de genes relacionados ao câncer e a outros processos, o que abre uma série de possibilidades para novos estudos. |