Dissertação

Métodos de obtenção e caracterização de biomembrana de quitosana e copaíba para potencial uso em feridas

Health professionals deal directly with several complex situations in the care of sick people. Among these, there are skin wounds that can harm the patient's clinical condition, in addition to costly treatment for healing. Skin wounds require dressings to protect against pathogenic microorganisms an...

ver descrição completa

Autor principal: PARANHOS, Sheila Barbosa
Grau: Dissertação
Idioma: por
Publicado em: Universidade Federal do Pará 2022
Assuntos:
Acesso em linha: http://repositorio.ufpa.br:8080/jspui/handle/2011/14784
Resumo:
Health professionals deal directly with several complex situations in the care of sick people. Among these, there are skin wounds that can harm the patient's clinical condition, in addition to costly treatment for healing. Skin wounds require dressings to protect against pathogenic microorganisms and to accelerate the healing process. With the emergence of biomaterials available for use in wound treatment, chitosan has become an effective choice, easily found in a natural and renewable form with healing potential. The chitosan membrane presents ideal conditions in the treatment of wounds, such as absorption, protection, biocompatibility and antimicrobial potential. To increase its healing effects, natural oils have been incorporated into the polymer matrix, such as copaiba, which has a high anti-inflammatory action. In this context, the work aimed to obtain and characterize chitosan membranes by emulsion and nanoemulsion of copaiba oil to treat skin wounds. The chitosan membranes with oil addition by emulsion and nanoemulsion were synthesized by the solvent evaporation technique. They were evaluated by macroscopic analysis and characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry, swelling percentage, humidity, contact angle. An in vitro assay of antibacterial activity against the bacterium S.aureus was carried out. The membranes had an apparently thin appearance, little malleability, relative opacity, continuous and good handling. He observed more porosity on the surfaces of membranes synthesized by nanoemulsion of copaiba oil, in addition to a more amorphous behavior. He noticed a better interaction between chitosan and oil constituents when the oil synthesis was prepared by nanoemulsion, resulting in improved stability of the material produced. The swelling percentages were higher in the MQCoN-0.1 (214±3.22%) compositions when immersed in water and the MQCoN-5.0 composition (220±6.83%) in the PBS solution. The wetter behavior was significant in membranes composed of 0.1% (0.80±1.37%) and 0.5% (3.00 ±0.79%) copaiba oil nanoemulsions. There was no great influence on the contact angle between syntheses and compositions. The chitosan membrane with 1.0% (v/v) of emulsified oil and the chitosan membrane with 0.5% (v/v) of nanoemulsified oil were the most hydrophilic membranes. All membranes were able to inhibit bacterial growth, except the chitosan membrane with 1.0%(v/v) oil emulsion. Materials obtained by nanoemulsion have ideal attributes for application in the use of skin wounds.