Tese

Modulação da neuroinflamação celular e neuroproteção induzidas por tratamento com betacariofileno em um modelo experimental de isquemia estriatal em ratos adultos

Stroke results from the transitory or permanent reduction of cerebral blood flow. It can be classified as hemorrhagic or ischemic. Ischemic stroke is responsible for around 87% of all cases. This acute neural disorder is the second cause of mortality and disability around the world and the main c...

ver descrição completa

Autor principal: LOPES, Rosana Telma Santos
Grau: Tese
Idioma: por
Publicado em: Universidade Federal do Pará 2017
Assuntos:
Acesso em linha: http://repositorio.ufpa.br/jspui/handle/2011/8636
Resumo:
Stroke results from the transitory or permanent reduction of cerebral blood flow. It can be classified as hemorrhagic or ischemic. Ischemic stroke is responsible for around 87% of all cases. This acute neural disorder is the second cause of mortality and disability around the world and the main cause of death in Brazil. Since ischemic stroke in patients usually results from a thrombotic or embolic occlusion of the middle cerebral artery (MCA), experimental models of ischemia have been developed to mimic human stroke. There are no neuroprotective drugs available for human stroke. It follows that research on development of alternative neuroprotective drugs are of important clinical relevance. In this study, we investigated the effects of betacaryophyllene, the main sesquiterpene present in about 40% of the copaiba oil-resin composition, on microglial activation, astrocytic reactivity and neuronal preservation following experimental MCAO in adult rats. Animals were submitted to experimental stroke by microinjections of endothelin-1 (ET-1) and treated (i.p) with betacaryophillene (N=4) or vehicle control (N=4) and perfused at 3 days or 7 days post-MCAO. Gross histopathology was performed using cresyl violet staining. Immunohistochemistry was used to assess neuronal loss (anti-NeuN), microglial activation (anti-ED1) and astrocytosis (anti-GFAP). Numbers of NeuN+ and GFAP+ cells were quantified in the ischemic striatum. Betacaryophyllene treatment reduced microglial activation, increased neuronal preservation and decreased astrocytic reactivity at 7 days post-MCAO. These results suggest that betacaryophylene modulates neuroinflammation and is neuroprotective following experimental striatal. Considering that betacaryophyllene is a natural dietetic extract already used in non-neural human diseases with antiinflammatory, anti-microbial and anti-carcinogenic properties, its use as a neuroprotective agent is a promising future therapy for human stroke.