/img alt="Imagem da capa" class="recordcover" src="""/>
Dissertação
Detecção e classificação automática de arritmias cardíacas em sinais de eletrocardiograma utilizando redes convolutivas 2D
O ECG é o método diagnóstico mais utilizado para identificar e classificar arritmias cardíacas, infarto do miocárdio e doença arterial coronariana. A maioria dos artigos apresentados na literatura para classificação de arritmias em eletrocardiogramas (ECG) utiliza redes convolucionais 1D. Essas rede...
Autor principal: | Leão, Davi Cauassa |
---|---|
Outros Autores: | http://lattes.cnpq.br/7437972669019275 |
Grau: | Dissertação |
Idioma: | por |
Publicado em: |
Universidade Federal do Amazonas
2024
|
Assuntos: | |
Acesso em linha: |
https://tede.ufam.edu.br/handle/tede/10053 |
Resumo: |
---|
O ECG é o método diagnóstico mais utilizado para identificar e classificar arritmias cardíacas, infarto do miocárdio e doença arterial coronariana. A maioria dos artigos apresentados na literatura para classificação de arritmias em eletrocardiogramas (ECG) utiliza redes convolucionais 1D. Essas redes exploram apenas as relações entre vizinhos à esquerda e à direita. Redes convolucionais 2D, por outro lado, exploram adicionalmente as relações entre vizinhos acima e abaixo, permitindo o estabelecimento de relações mais complexas entre os dados. Este estudo propõe um método para a classificação de arritmias usando redes convolucionais 2D. As amostras do sinal de ECG (1D) é convertido em uma imagem de intensidade (2D). Para o treinamento da CNN, uma nova técnica de aumento de dados é proposta utilizando janelas deslizantes. Valores de aumento de dados de até 11 vezes são alcançados. Três arquiteturas de CNN e dois métodos de otimização (SGDM e ADAM) são avaliados. O melhor resultado para a classificação de 13 arritmias, com uma precisão global de 95,80%, é obtido com o otimizador SGDM e aumento de dados. |