Tese

Mergulhos equivariantes de variedades Kahlerianas Simétricas

Neste trabalho investigamos algumas características dos mergulhos equivariantes de uma variedade Kãhleriana Simétrica. Usamos o Teorema de Wallach-Cartan para caracterizar tais mergulhos nos casos do CPn e SO(2n)IU(n) e verificamos que nestes casos os únicos mergulhos com pluri-curvatura média paral...

ver descrição completa

Autor principal: Santos, Kelly Karina
Outros Autores: http://lattes.cnpq.br/0084637152836977
Grau: Tese
Idioma: por
Publicado em: Universidade Federal do Amazonas 2017
Assuntos:
Acesso em linha: http://tede.ufam.edu.br/handle/tede/5432
Resumo:
Neste trabalho investigamos algumas características dos mergulhos equivariantes de uma variedade Kãhleriana Simétrica. Usamos o Teorema de Wallach-Cartan para caracterizar tais mergulhos nos casos do CPn e SO(2n)IU(n) e verificamos que nestes casos os únicos mergulhos com pluri-curvatura média paralela são os extrinsecamente simétricos. Usando o mergulho standard do CPn mostramos que se uma subvariedade complexa Q do ar tem pluri-curvatura média paralela então ela é totalmente geodésica. Propusemos ainda um novo mergulho equivariante, denominado p—mergulho, para um espaço simétrico hermitiano qualquer e verificamos alue, pelo menos no caso em que o posto de P é um, a pluri-curvatura média não é paralela .