Dissertação

Retas no Espaço Projetivo de dimensão 3

Apresentamos neste trabalho um estudo de retas no P3, inicialmente abordamos alguns conceitos fundamentais à Geometria Algébrica, tais como o espaço projetivo, variedades projetivas, dimensão, grau e blowup (inchamento). Em seguida estudamos o conjunto das retas nos espaços projetivos e, mais det...

ver descrição completa

Autor principal: Santos, Téo Felipe dos
Outros Autores: http://lattes.cnpq.br/1274222257889492
Grau: Dissertação
Idioma: por
Publicado em: Universidade Federal do Amazonas 2017
Assuntos:
Acesso em linha: http://tede.ufam.edu.br/handle/tede/5912
Resumo:
Apresentamos neste trabalho um estudo de retas no P3, inicialmente abordamos alguns conceitos fundamentais à Geometria Algébrica, tais como o espaço projetivo, variedades projetivas, dimensão, grau e blowup (inchamento). Em seguida estudamos o conjunto das retas nos espaços projetivos e, mais detalhado, no espaço P3. No qual é mostrado que elas formam uma variedade algébrica chamada a variedade de Grassmann. Também estudamos os ciclos de Schubert e os anéis de Chow das grassmannianas. Estes resultados se aplicam ao estudo das retas nas superfícies quádricas em P3. Por exemplo, é mostrado que 4 retas na posição geral no P3 têm 2 retas secantes, e que uma quádrica inchada em 1 ponto é isomorfa ao plano inchado em 2 pontos.