/img alt="Imagem da capa" class="recordcover" src="""/>
Dissertação
Retas no Espaço Projetivo de dimensão 3
Apresentamos neste trabalho um estudo de retas no P3, inicialmente abordamos alguns conceitos fundamentais à Geometria Algébrica, tais como o espaço projetivo, variedades projetivas, dimensão, grau e blowup (inchamento). Em seguida estudamos o conjunto das retas nos espaços projetivos e, mais det...
Autor principal: | Santos, Téo Felipe dos |
---|---|
Outros Autores: | http://lattes.cnpq.br/1274222257889492 |
Grau: | Dissertação |
Idioma: | por |
Publicado em: |
Universidade Federal do Amazonas
2017
|
Assuntos: | |
Acesso em linha: |
http://tede.ufam.edu.br/handle/tede/5912 |
Resumo: |
---|
Apresentamos neste trabalho um estudo de retas no P3, inicialmente abordamos
alguns conceitos fundamentais à Geometria Algébrica, tais como o espaço projetivo,
variedades projetivas, dimensão, grau e blowup (inchamento). Em seguida estudamos
o conjunto das retas nos espaços projetivos e, mais detalhado, no espaço P3.
No qual é mostrado que elas formam uma variedade algébrica chamada a variedade
de Grassmann. Também estudamos os ciclos de Schubert e os anéis de Chow das
grassmannianas. Estes resultados se aplicam ao estudo das retas nas superfícies
quádricas em P3. Por exemplo, é mostrado que 4 retas na posição geral no P3 têm 2
retas secantes, e que uma quádrica inchada em 1 ponto é isomorfa ao plano inchado
em 2 pontos. |