/img alt="Imagem da capa" class="recordcover" src="""/>
Dissertação
Teoria dos Números: praticando a resolução de problemas Olímpicos
A teoria dos números é um ramo da Matemática praticamente inexplorado no ensino básico e quase inexistente Ensino Médio. As aplicações e propriedades no Ensino Fundamental se restringem aos critérios de divisibilidade, ao máximo divisor comum e ao Algoritmo de Euclides, apresentados de forma bast...
Autor principal: | Silva Filho, Daniel Sombra da |
---|---|
Outros Autores: | http://lattes.cnpq.br/5732259732191167 |
Grau: | Dissertação |
Idioma: | por |
Publicado em: |
Universidade Federal do Amazonas
2018
|
Assuntos: | |
Acesso em linha: |
https://tede.ufam.edu.br/handle/tede/6282 |
Resumo: |
---|
A teoria dos números é um ramo da Matemática praticamente inexplorado no ensino básico
e quase inexistente Ensino Médio. As aplicações e propriedades no Ensino Fundamental se
restringem aos critérios de divisibilidade, ao máximo divisor comum e ao Algoritmo de Euclides,
apresentados de forma bastante elementar e tímida. Contudo a teoria dos números é
um ramo bastante vasto dentro da Matemática, fortemente relacionada à resultados da Álgebra.
Nela constituem-se ferramentas muito poderosas para a resolução de problemas de olimpíadas,
demonstração de propriedades e aplicações indiretas em outras ciências. Neste trabalho são
apresentados e demonstrados, de forma clara e concisa, os resultados mais fundamentais referentes
à teoria dos números, os quais não precisam de estudos avançados na área para serem
compreendidos. Uma familiaridade com as propriedades dos números inteiros, os aspectos de
divisibilidade vistos na educação básica e noções de demonstração matemática são suficientes
para que o leitor compreenda o escopo deste trabalho. Os principais resultados apresentados
são: o Algoritmo de Euclides, o Teorema Fundamental da Aritmética, os Teoremas de Fermat,
Wilson e Euler e a função de Euler. No transcorrer das demonstrações são apresentados exercícios
que exemplificam a teoria. Além disso, são dedicados dois capítulos para resolução de
problemas olímpicos, com a intenção de explorar de forma inteligente os conceitos apresentados
no transcorrer da teoria. |