/img alt="Imagem da capa" class="recordcover" src="""/>
Dissertação
Identidades de grupo em unidades de Anel de Grupo
Neste trabalho abordamos a confirmação da conjectura de Brian Hartley, a saber: "Seja K um corpo e G um grupo de torção. Se U(KG), o grupo das unidades da álgebra de grupo KG, satisfaz uma identidade de grupo, então KG satisfaz uma identidade polinomial. Estudamos o caso particular desta conjectura,...
Autor principal: | Souza, Joerlen Alves de |
---|---|
Outros Autores: | http://lattes.cnpq.br/1884862283428824 |
Grau: | Dissertação |
Idioma: | por |
Publicado em: |
Universidade Federal do Amazonas
2022
|
Assuntos: | |
Acesso em linha: |
https://tede.ufam.edu.br/handle/tede/8775 |
Resumo: |
---|
Neste trabalho abordamos a confirmação da conjectura de Brian Hartley, a saber: "Seja K um corpo e G um grupo de torção. Se U(KG), o grupo das unidades da álgebra de grupo KG, satisfaz uma identidade de grupo, então KG satisfaz uma identidade polinomial. Estudamos o caso particular desta conjectura, seguindo de perto o trabalho intitulado "Group identities on units of rings, de Antônio Giambruno, Eric Jespers e Ângela Valenti, os quais provaram a conjectura de Hartley para anéis de grupo RG sobre um domínio comutativo infinito R de característica $p\ge0$ e G um p’-grupo de torção. |