Trabalho de Conclusão de Curso

Estudo de biocerâmicas sintetizadas com a incorporação de escama de pirarucu calcinada

Biomaterials are in constant development in several branches of science such as Medicine and Materials Engineering, due to the growing demand for materials that can help or replace parts of the human body. Among these reasons, the objective of this work was to study the mechanical and biological...

ver descrição completa

Autor principal: Caporazzo, Ana Carolina de Amorim
Grau: Trabalho de Conclusão de Curso
Idioma: por
Publicado em: Brasil 2023
Assuntos:
Acesso em linha: http://riu.ufam.edu.br/handle/prefix/7198
Resumo:
Biomaterials are in constant development in several branches of science such as Medicine and Materials Engineering, due to the growing demand for materials that can help or replace parts of the human body. Among these reasons, the objective of this work was to study the mechanical and biological properties of bioceramic bodies of different mixtures containing hydroxyapatite, alumina and titania. Among these studied materials, specimens were analyzed at limiting concentrations of 40% by mass of hydroxyapatite, 60% of alumina and 30% of titania, submitted to different thermal cycles, to evaluate the responses of the materials to mechanical tests of resistance to compression and hardness, and bioactivity test. The use of hydroxyapatite was due to its composition containing calcium phosphate as well as the composition of the human body, it is a raw material with a high rate of biocompatibility, reducing the risk of rejection by the host organism, ideal for regeneration and bone repair. Alumina is a well-known bioceramic due to its high mechanical strength and emerging biological properties, mainly for bone replacement. Titania presents improved biological and mechanical properties when in the presence of other raw materials. Hydroxyapatite and titania presented limitations of their mechanical properties in relation to sintering temperatures above 1200°C, unlike alumina in which their mechanical properties increased at temperatures of 1250°C. The HAp-Al2O3-TiO2 composition demonstrates biological properties of bioactivity as they interact with the submerged medium without loss of mass.