Tese

Análise de esforços eletromagneto-mecânicos nos enrolamentos de um transformador sob condições de correntes de inrush

This thesis presents an analysis of the effect of electromagnetic origin forces on structural deformation, stress and safety factor in power transformers when they are subjected to inrush currents. The methodology adopted is based on a magneto-mechanical assessment of the transformer using the finit...

ver descrição completa

Autor principal: FONSECA, Wellington da Silva
Grau: Tese
Idioma: por
Publicado em: Universidade Federal do Pará 2017
Assuntos:
Acesso em linha: http://repositorio.ufpa.br/jspui/handle/2011/7484
Resumo:
This thesis presents an analysis of the effect of electromagnetic origin forces on structural deformation, stress and safety factor in power transformers when they are subjected to inrush currents. The methodology adopted is based on a magneto-mechanical assessment of the transformer using the finite element method (FEM). In this sense, the operating condition of its transformer energization is considered to accurately estimate the magnetic field density in the ferromagnetic structure and to find the values of mechanical stresses or forces in the axial and radial directions on the windings. These components are distributed over energized the high-voltage windings for observing the mechanical loading, which are more susceptible to such current actions. With this goal, it is implemented two- dimensional (2D) and threedimensional (3D) modeling of the discretized transformer structures in consolidated software, which are based on the Finite Elements Method, intended so to obtain more precise results in calculating the variables described. Comparisons between the results from the numerical method with those obtained by analytical methods are made, demonstrating that the FEM provides more precise distribution of stresses along the windings of the transformers when subjected to operating limits conditions as under currents inrush. It is also presented the magnetic flux distribution in the transformer, with high currents circulating in concentric winding of this. It modifies the flux path, causing in a significant increase in the leakage field and consequently on radial and axial forces. The results obtained for the structural behavior of the windings during inrush currents were also seen that the ends of the windings, where the spacers are located, producing high structural weakness due to the axial electromagnetic forces. This also implies a reduction in the safety factor at the ends windings ends and should be considered on the design of power transformers.