Dissertação

Autovalores estáveis de uma família de operadores Autoadjuntos

Sendo A(q) uma família de operadores diferenciáveis auto-adjuntos e M(q0) o auto-espaço associado a um certo autovalor 0 de A(q), com multiplicidade n. Dissertaremos neste trabalho quais resultados podemos obter sobre o conjunto dos parâmetros de autovalores que estão próximos de 0 e mantém a mult...

ver descrição completa

Autor principal: Silva, Raphael da Costa
Outros Autores: http://lattes.cnpq.br/3310860313089520
Grau: Dissertação
Idioma: por
Publicado em: Universidade Federal do Amazonas 2017
Assuntos:
Acesso em linha: http://tede.ufam.edu.br/handle/tede/5505
Resumo:
Sendo A(q) uma família de operadores diferenciáveis auto-adjuntos e M(q0) o auto-espaço associado a um certo autovalor 0 de A(q), com multiplicidade n. Dissertaremos neste trabalho quais resultados podemos obter sobre o conjunto dos parâmetros de autovalores que estão próximos de 0 e mantém a multiplicidade fixa. Para alcançarmos o objetivo principal deste trabalho iremos definir e usar a ideia de transversalidade, onde não deixa de ser uma extensão, para dimensões maiores, em que a imagem inversa de um valor regular forma uma superfície. Com o conceito de transversalidade podemos então definir quando um auto-valor é estável. Incluindo assim a ideia de estabilidade, será suficiente para encontrarmos um resultado muito importante e até "elegante" para o conjunto dos parâmetros que mantém autovalores próximos de 0 com multiplicidade fixa, onde será o teorema principal deste trabalho.